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Abstract

There is a potential free-rider problem when several siblings consider future provision of

care for their elderly parents. Siblings can commit to not providing long-term support by

living far away. If location decisions are made by birth order, older siblings may enjoy a first-

mover advantage. We study siblings’location decisions relative to their parents by estimating a

sequential participation game for US data. We find: (1) limited strategic behavior: in two-child

families, more than 92% of children have a dominant strategy; and (2) a non-negligible public

good problem: in families with multiple children, 18.3% more parents would have had at least

one child living nearby had location decisions been made cooperatively.

∗We thank Chris Bidner, Zvi Eckstein, Denzil Fiebig, Makoto Hanazono, Susumu Imai, Michael Keane, Kevin
Lang, Robert Porter, Nobue Suzuki, John Wooders, two anonymous referees, and the editor, Petra Todd, for insightful
comments and suggestions that have improved the presentation and analysis. Research support from the Australian
Research Council’s Discovery Projects funding scheme (project number DP110100773) and from the ARC Centre of
Excellence in Population Ageing Research (CEPAR) is also gratefully acknowledged. Earlier versions of the paper were
circulated under the title "Externality and Strategic Interaction in the Location Choice of Siblings under Altruism
toward Parents."
†Corresponding author. E-mail: shiko.maruyama@uts.edu.au

1



1 Introduction

The burden of caring for elderly parents has been well-documented (e.g., Ettner (1996), van den

Berg, Brouwer, and Koopmanschap (2004), Bolin, Lindgren, and Lundborg (2008), and Lilly, La-

porte, and Coyte (2010)). When several siblings consider providing care for their elderly parents,

altruism toward the parents and the cost of caregiving result in a textbook public good problem.

The more altruistic the siblings are, the stronger is their incentive to free-ride on each other because

a stronger altruism implies a larger positive externality of caregiving.

This public good problem is particularly plausible when we consider siblings’location decisions.

The opportunity cost of living near the parent may be substantial, although it is not widely doc-

umented in the literature. The discrete nature of location choice and associated relocation costs

make effi cient bargaining diffi cult. Furthermore, there exists a potential commitment device arising

from birth order: the oldest child may enjoy a first-mover advantage by moving far away as soon

as schooling is completed. Consistent with this argument, Konrad, Künemund, Lommerud, and

Robledo (2002) find that in Germany, older siblings are more likely to move far away from their

parents than younger siblings.

We quantify this free-rider problem and first-mover advantage for the first time in the family

care literature by studying siblings’location decisions relative to their elderly parents. We build

a game-theoretic econometric model to explain cross-sectional variation in the patterns of sibling

location in the US. It is a perfect-information participation game in which, by birth order, each

sibling sequentially makes a once-and-for-all location decision whether to live close to their parent.

Although this approach abstracts from dynamics in location decisions except for birth order (as

in most previous studies), our model instead features rich heterogeneity and encompasses a wide
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variety of participation games. Consequently, our analysis allows us to discover (1) the degree and

nature of externality, (2) the associated under-provision or over-provision of proximate living, (3)

the game structure and equilibrium characteristics, (4) the size of the first-mover advantage, and

(5) how externality and ineffi ciency vary across families. To confirm the validity of our model, we

also estimate a private-information model and a cooperative model in which siblings maximize their

utility sum.

The key innovation in our empirical framework relies on the fact that a wide range of par-

ticipation games can be summarized by three structural parameters: altruism, private cost, and

cooperation. The “cooperation”term captures another likely source of positive externality of prox-

imate living, the so-called “synergy effect”: siblings living near parents may be able to cooperate

and provide care more effi ciently. In fact, shared caregiving is widely observed (see, e.g., Matthews

and Rosner (1988) and Checkovich and Stern (2002)). By modeling altruism and cooperation to-

gether and by introducing heterogeneity in the three structural parameters, we can incorporate a

broad range of participation games and identify the games played by American families.

Informal care still plays an important role in aging societies, despite a trend toward formal

care. The OECD (2005) reports that around 80% of the hours of care for the elderly with a

disability or severe medical condition are provided informally. Despite declining intergenerational

coresidence, the majority of adult Americans still live within 25 miles of their mothers (see Compton

and Pollak (2013)). Family assistance, such as companionship, frequent visits, and mental and

emotional support, contributes to the well-being of elderly parents and enables them to remain in

the community (see Matthews and Rosner (1988) and Bonsang (2009)). A good understanding of

adult children’s location decisions, hence, serves as an important step in designing public policies

to promote the well-being of families in aging societies. In particular, by quantifying the extent of
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the public good problem, externality, and strategic behavior in the location decisions of families

and by examining Pareto optimality, this study offers useful insights into who should be supported,

subsidized, or taxed in order to achieve higher family welfare.

The results are summarized as follows. First, the location game played by American siblings is

characterized by moderate altruism and cooperation. This implies very limited strategic behavior.

In two-child families, more than 92% of children have a dominant strategy. The first-mover ad-

vantage is almost negligible: reversing birth order affects only 1.9% of two-child families. Second,

however, there is non-negligible under-provision of proximate living due to free-riding. In multi-

child families, 28.8% end up in location configurations that are not joint-utility optimal. Most

typical in this case is the situation in which no child lives near the parent and no Pareto improving

location configuration exists; however, the siblings can achieve higher joint utility if one of them

lives near the parent. In families with multiple children, 18.3% more parents than actually observed

in data would have had at least one child living nearby had location decisions been made cooper-

atively than as actually observed in data. Third, we find substantial heterogeneity across families.

The under-provision of proximate living is more severe if children exhibit strong altruism toward

their parents, particularly in a family with a single mother with limited education, poor health,

and younger children. Lastly, we find that the non-cooperative model fits the data considerably

better than the joint-utility maximization model.

This paper also contributes to the empirical literature on games. First, our model features rich

heterogeneity in the two sources of externality. Consequently, different players face participation

games with different equilibrium characteristics (e.g. coordination and anti-coordination games).

This enables us to draw inferences about the shares of families in the prisoners’dilemma situation,

families achieving the joint-utility optimum, and families with a large first-mover advantage. Sec-
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ond, this paper is one of very few empirical analyses to study the first-mover advantage, preemption,

and commitment in sequential decision making. Most prior empirical studies examine extremely

simple cases, such as two-player games, with two exceptions. Schmidt-Dengler (2006) studies the

timing game of MRI adoption by hospitals in a fairly general setup and finds a significant but small

preemption effect. Stern (2014), probably the closest work to ours, studies the patterns of sibling

location in a private-information sequential framework. The models in these two studies, however,

lack the rich heterogeneity of our model that allows us to capture a wider variety of participation

games.

2 Related Literature

A small but tangible body of literature applies a non-cooperative game-theoretic framework to

study interactions among siblings with respect to informal care arrangements (see Hiedemann and

Stern (1999), Checkovich and Stern (2002), Engers and Stern (2002), Byrne, Goeree, Hiedemann,

and Stern (2009), and Knoef and Kooreman (2011)). In these models, each family member acts

to maximize his/her own utility, and the equilibrium arrangement is solved in estimation. Hiede-

mann and Stern (1999) and Engers and Stern (2002) study the family decision about the primary

caregiver. Checkovich and Stern (2002) study the amount of care, allowing for multiple caregivers.

Byrne, Goeree, Hiedemann, and Stern (2009) enrich these studies by also modeling consumption,

financial transfers for formal home care, and labor supply. These studies use US data, whereas

Knoef and Kooreman (2011) estimate a model using European multi-country data. With the ex-

ception of Byrne, Goeree, Hiedemann, and Stern (2009), the results of these studies all indicate

interdependence in caregiving decisions among siblings. For example, Knoef and Kooreman (2011)
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argue that if siblings engage in joint utility maximization, 50% more informal care will be pro-

vided to parents, and the cost to the children will increase to a much lesser extent. All these

structural studies employ a game-theoretic framework to explain across-family variations in care

arrangements, taking families’location decisions as given.

We advance the literature on informal care in two ways. First, we are one of the first to apply

a game-theoretic framework to the location decisions of siblings, rather than the informal care

arrangement decision. Studying the location decision is important because the location pattern is

a critical determinant of formal and informal care arrangements (see Checkovich and Stern (2002),

Engers and Stern (2002), Bonsang (2009), and Hiedemann, Sovinsky, and Stern (2014)). There are

myriad economics and non-economics studies on coresidence and co-location between elderly parents

and their children (e.g., Börsch-Supan, Kotlikoff, and Morris (1988), Dostie and Léger (2005), Hank

(2007), Fontaine, Gramain, and Wittwer (2009), Hotz, McGarry, and Wiemers (2010), Johar and

Maruyama (2011), Compton and Pollak (2013), Johar and Maruyama (2014), and Maruyama

(2015)), but few investigate the non-cooperative decision of family living arrangements,1 and none

quantifies the free-rider problem among siblings, although the discrete and long-term nature of

location decisions may reinforce the free-riding and strategic behavior involved in the coordination

of caregiving among siblings.

Second, we are the first to develop an econometric model that captures the sequential aspect of

decision making among siblings and to quantify its empirical importance. All studies with a game-

theoretic econometric model in this literature assume that siblings make decisions simultaneously.

1Pezzin and Schone (1999) study American families with one daughter using a bargaining model of coresidence, care
arrangements, and the child’s labor force participation. Sakudo (2008) studies Japanese families with one daughter
using a bargaining model of coresidence, monetary transfers, and marriage. The study on living arrangements by
Hoerger, Picone, and Sloan (1996) allows multiple children to contribute to caregiving, based on a single family utility
function.
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Our study builds on the nonstructural study by Konrad, Künemund, Lommerud, and Robledo

(2002), who estimate an ordered logit model of children’s distance from the parent with child-level

data of two-child families drawn from the German Aging Survey. They find that first-born children

are more likely to live far from their parents than their younger siblings, and argue that this finding

supports their first-mover advantage hypothesis: by locating suffi ciently far from the parent, the

first-born child can force a younger sibling to locate closer to the parent as the primary caregiver.

However, observed birth-order asymmetry may simply be explained by the observed characteristics

of siblings. To the best of our knowledge, Stern (2014) is the only empirical work that studies the

strategic location decision of families with more than two siblings. The unique feature of his work

is that his model allows for private information in each child’s location preferences, in addition

to common-knowledge factors that are unobservable to the econometrician. In one sense, Stern’s

(2014) setup is more general than ours because it allows for two types of unobservable factors,

but this feature itself makes the identification of model parameters challenging, and hence requires

strong model restrictions: in particular, the private term in each sibling’s location preferences

follows an independent normal distribution; what we call altruism has limited heterogeneity; and

externality due to cooperation is not allowed. Consequently, Stern’s (2014) setup lacks the rich

heterogeneity of our approach, and the source of identification and the generalizability of the results

need further investigation.

Given the complexity of care and living arrangements, one model does not capture all the pos-

sible aspects of family decision making. Prior studies utilize various measures of informal care and

other transfers, endogenize labor force participation and formal care decisions, and/or incorporate

important policy variables, such as eligibility for Medicaid. We abstract from these relevant features

to concentrate on modeling sequential interaction and externality. Our study should therefore be
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regarded as a complement to existing studies.

3 Data and Descriptive Results

3.1 Data

The data are drawn from the Health and Retirement Study (HRS), a nationally representative

biannual longitudinal survey of Americans over 50. The HRS took its current form in 1998, and

has since added two new cohorts in 2004 and 2010. It tracks the health, wealth, and well-being of

elderly individuals and their spouses. The HRS also questions respondents about the demographics

and location of all their children.

To make our econometric model tractable, we take a cross-sectional approach and abstract from

dynamic aspects other than sequential decision by birth order. We combine the three HRS waves

in 1998, 2004, and 2010, and construct our “cross-sectional” sample as follows. First, we choose

family observations from HRS 1998 that meet the sample selection criteria explained below. Next,

we add families from HRS 2004 that (1) meet the criteria and (2) are not included in our HRS 1998

sample. We then add families from HRS 2010, repeating the same procedure. Each family thus

appears only once in our sample. We pool the three waves to increase the sample size and secure

time variation (twelve years apart). As reported in Johar and Maruyama (2012), our basic results

are unaffected by the choice of survey waves.

Our sample consists of individuals over 50: (1) who do not live in a nursing home or institution;

(2) who do not have a spouse younger than 50; (3) who have at least one surviving biological child;

(4) who do not have more than four children; (5) who have no step- or foster children; (6) whose

youngest child is 35 years old or older and whose oldest child is younger than 65; (7) whose oldest
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child is at least 16 years younger than the parent (or the spouse, if the spouse is younger); and

(8) who have no same age children. In HRS 2010, 3% of the elderly population live in nursing

homes and fewer than 7% have no child. We restrict the number of children to four to limit the

computational burden. For the purpose of our research, we expect to learn little from adding very

large families.

We focus on relatively older children because the moves of younger children are often temporary;

for example, they may move for postgraduate education. The location configuration of those above

35 is more likely to involve serious long-term commitment. We find that lowering this limit to age

30 does not affect our main results. We also set the maximum age of children because our model

focuses on where children set up their own families, thus moves around retirement age should be

excluded. Lastly, we exclude families with same-age children because we utilize birth order.

From this sample of parents, we create a child-level data set. Spousal information is retained

as explanatory variables. Our final data consist of 18,647 child observations in 7,670 families, of

which 55.0%, 24.9%, and 20.0% is from the HRS waves 1998, 2004, and 2010, respectively.

3.2 Location Patterns of Siblings

The location of the children relative to the parent defines our dependent variable. We group

“living with the parent”and “living close to the parent” together and refer to this as living near

the parent. Although coresidence is becoming less common, shared caregiving by siblings living

nearby is commonly observed (e.g., Matthews and Rosner (1988) and Checkovich and Stern (2002)).

Siblings living nearby also contribute to the family by other means – by frequent visits and as

a backup in the case of primary caregiver burnout.2 Due to the design of the HRS, proximity is

2We focus on the binary setup for the ease of computation and interpretation, following the majority of the
literature. One of the referees suggests a three-alternative setup rather than a binary setup, referring to Compton
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defined as a distance of less than 10 miles. This definition is used in HRS reports and previous

studies (e.g., McGarry and Schoeni (1995) and Byrne, Goeree, Hiedemann, and Stern (2009)).3

Table 1 presents the location patterns of siblings in our sample by the number of children in a

family. The top panel shows that 48.7% of only children live far from their parents. The second

panel shows that elderly parents with two children are most likely to have one child nearby (43.1%)

and least likely to have both of them nearby (17.4%). Naturally, the probability of having at

least one child nearby increases with the number of children: parents of four children are least

likely to live with no child nearby (20.5%) compared to parents with fewer children. Table 1 also

reports the detailed location configurations by birth order. Each possible configuration is denoted

by the sequence of “F”and “N”, indicating each sibling’s decision from the oldest to the youngest.

For example, “FFN” indicates the configuration of a three-child family where only the youngest

child lives near the parent. In the last column, we report the theoretical share of each location

configuration under the independence assumption. We compute these shares by using the overall

propensity of living near parents (p =40.4%) under the assumption that there is no externality and

each child makes a decision independently.

[Insert Table 1: Sibling Location Configurations by Birth Order]

Table 1 highlights five empirical regularities that our econometric model needs to address.

First, only children are more likely to choose to live nearby compared to children with siblings,

and Pollak’s (2013) work, which finds qualitative difference between those who choose proximate living and those who
choose coresidence. To examine the validity of the binary setup, we estimated several nested logit models that allow
for two different nesting structures: (1) siblings make a decision between “living far” vs. “living near/coresidence”
and (2) siblings make a decision between “separate living (living far/near)” vs. “coresidence.”We found no strong
evidence for the latter, that is, adult children do not appear to decide whether to leave the parents before they choose
distance. This finding supports our binary aggregation.

3Using the National Survey of Families and Households, Compton and Pollak (2013) report that the median
distance between a married couple and the husband’s (wife’s) mother is 25 (20) miles. Their finding suggests that a
substantial proportion of children whom we categorize as “living far” live within 30 miles of their parent.
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perhaps because only children have no one on which to free-ride. Second, in multi-child families,

the location decisions of siblings are correlated: we observe polar cases such as “FFF”and “NNN”

more frequently than theoretically implied by shares under independence. This correlation may

arise as a result of (1) similarity in siblings’preferences, (2) similarity in siblings’characteristics,

or (3) cooperation between siblings. These three possibilities are distinguished in our econometric

model.

The third empirical regularity is birth-order asymmetry. Conditional on one child living near the

parent, two-child families have two possible location configurations: “NF”and “FN”. Table 1 shows

that “NF” is less frequently found than “FN”. The three- and four-child family panels show the

robustness of this birth-order asymmetry: in all rows with multiple possible location configurations,

the rightmost cell has the largest share. This robust birth-order asymmetry is in line with Konrad,

Künemund, Lommerud, and Robledo’s (2002) argument of first-mover advantage. However, this

may simply reflect systematic difference between older and younger siblings. For example, it is a

well-documented fact that older children tend to have more education than their younger siblings

(see, e.g., Davis (1997), Sulloway (2007), and Booth and Kee (2009)). In our sample, the share of

those who have a university degree is 37.0% and 35.6% respectively for the first and second children

in two-child families, and in three-child families, it is respectively 36.2%, 32.0%, and 31.3% for the

first, second, and third children. How much of the observed birth-order asymmetry is attributed

to first-mover advantage is an empirical question.

The fourth empirical regularity concerns how a younger child responds to an older sibling’s

location decision. In the panel of two-child families, for example, conditional on the first child

moving far from the parent, 63.1% (= 0.396/(0.396+0.232)) of second children choose “F”, whereas

conditional on the first child staying near the parent, 53.4% of second children choose “F”. On the
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surface, this appears inconsistent with the free-rider problem, in which the second child is more

likely to leave the parent when the first child remains near the parent. However, these numbers

may simply capture the above-mentioned similarities in preferences and characteristics. Whether

free-riding behavior exists needs to be examined after we have controlled for correlation.

Lastly, among the polar cases such as “FFF”and “NNN”, everyone-far location patterns show

larger differences between observed and predicted shares than everyone-near location patterns.

This distortion toward everyone-far location patterns is not explained by either correlation or the

cooperation effect. It instead suggests that free-riding behavior under altruism leads to under-

provision of proximate living.

3.3 Explanatory Variables

We use the characteristics of both parents and children. Table 2 provides the definitions of the

explanatory variables and their summary statistics. The parental variables, which are always named

with prefix “P_”, include demographics (age, sex, marital/cohabitation status, and ethnicity),

education, health status, location type (urban or rural), and housing status. For the child variables,

which always have prefix “C_”, we use age, sex, education, marital status, and information on

grandchildren. Parental health status is constructed as the first factor from a factor analysis that

includes: (1) self-assessed health index; (2) Activities of Daily Living (ADL) and Instrumental

Activities of Daily Living (IADL) scores; and (3) previous diagnoses of diabetes, hypertension, and

stroke. These diagnoses are chosen because they tend to be persistent and are relatively common

among the elderly. When a respondent parent is married, the health data of the couple are averaged

to reduce the computational burden of the full model while keeping its interpretation simple.4

4Our specification tests based on various binary probit models of the location decision suggest that how we include
and aggregate the health indexes of married parents (e.g. separate indexes, adding interaction term, the worst of the
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Our assumption about parental location and housing status is that the location configuration is

determined by children’s migration, not parental migration. This approach is justified by the fact

that, although elderly parents sometimes relocate closer to their children, our calculation based on

HRS 2010 reveals that more than 80% of new coresidence is formed by children moving in with the

parents.5

[Insert Table 2: Definition and Summary Statistics of Variables]

The majority of the parents in the sample own a house and are single, with widowed mothers

being the most common. The majority of children are married. The mean ages of parents and

children are 72 and 45, respectively.

4 The Model

4.1 Environment

We consider a game played by children. Each child chooses whether to live close to their parent.

To make our analysis tractable, “living near”includes living together. Let ai,h ∈ {0, 1} denote the

action of child i = 1, ..., Ih in family h = 1, ...,H. If child i lives near the parent, ai,h = 1. Child

i = 1 denotes the oldest child.

We model the location choice of children as a perfect-information sequential game in which each

child sequentially makes a once-and-for-all location decision. This approach has several implica-

tions. First, we formulate the location problem of families solely as the children’s problem, not

modeling the role of parents. This simplification helps us to focus on the interaction among siblings,

two, etc.) does not affect our main results.
5Removing the location and housing variables does not affect our main results.
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but it does not mean that parents are passive and play no role. Parents may influence children’s

payoff function by promising compensation for informal care in the future. Family bargaining and

intergenerational transfers are implicit in our payoff function and our coeffi cient estimates should

be interpreted in a reduced-form way.6

Second, modeling location choice as a once-and-for-all decision abstracts from the dynamic

aspects of location choice except for the birth order sequence. Location choice dynamics caused by

events and decisions in later life, such as changes in the family structure and the deterioration of

parents’health, is beyond the scope of this study, as it has been for most previous studies. Our

utility function should be interpreted as the present discounted value of future utility.

Third, we rely on a non-cooperative framework. An alternative is a model of joint-utility

maximization, which we also estimate and test against our non-cooperative framework. Fourth, ex-

post bargaining and side payments among siblings are beyond the scope of our discrete setup. Large

relocation costs justify this approach to some extent. Alternatively, our estimates of externality

and strategic interaction can be regarded as their lower bound estimates, because in general, side-

payments neutralize externality and strategic interaction.

Fifth, we assume a game with perfect information. Although most studies of empirical games

assume incomplete information, the perfect-information assumption is reasonable in the family

setting because family members know each other well.7 To verify this assumption, we also estimate

an incomplete-information simultaneous game.

6Checkovich and Stern (2002) and Knoef and Kooreman (2011) employ the same approach.
7The informal care literature uses both approaches: Byrne, Goeree, Hiedemann, and Stern (2009) assume a com-

plete information game, whereas Engers and Stern (2002) and Stern (2014) assume a game with private information.
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4.2 Preferences

Denote the utility of child i by ui,h (ai,h, a−i,h), where a−i,h ∈ {0, 1}Ih−1 is the choices of child i’s

siblings. In the rest of the paper, subscript −i indicates a vector that contains the values of all

siblings except for child i, and the family subscript, h, is omitted when no ambiguity arises. Given

a−i, child i’s problem is written as

max
ai∈{0,1}

ui (ai, a−i) .

We further assume that child i’s utility depends only on ai and the number of siblings who

choose to live near the parent, irrespective of which siblings.8 Let N =
∑I

k=1 ak denote the number

of siblings who choose to live near the parent. The utility levels when child i lives far from the

parent and near the parent are specified as follows:

{
ui (ai = 0, a−i) = uαi (N) ,

ui (ai = 1, a−i) = uαi (N) + uβi + uγi (N) .
(1)

Utility flow consists of three structural parameters, uαi (N) , uβi , and u
γ
i (N). The first parameter,

uαi (N), captures the child’s altruism toward the parent. It is a utility gain of child i from the

parent’s well-being (such as happiness, good health, and long-term security) that arises if the

parent has a child nearby, regardless of which child that is. We assume uαi (0) = 0, that is, we

normalize the system without loss of generality so that when every sibling lives far from the parent,

everyone receives zero utility. If uαi (N > 0) is positive, proximate living has a positive externality,

and child i free-rides on child j if child i lives far and child j lives near the parent. Altruism,

uαi (N), may be an increasing function of N if the number of children living nearby relates to the

8Relaxing this restriction is conceptually straightforward but computationally challenging.
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amount of care and attention given to the parent.

The next parameter, uβi , captures child i’s private cost (or benefit) from living near the parent

irrespective of the other children’s decision, a−i. This term includes not only caregiving burdens but

also any other net utility or monetary gain/loss from living near, such as opportunity costs, housing

benefits in the case of coresidence, attachment to the location, grandchild care from parents, and

the consumption value of the time child i shares with the parent. When living far away, a child

often provides financial assistance instead of informal care (as discussed by Antman (2012)). This

is also a part of the net private cost term.

The third parameter, uγi (N), is child i’s private costs or benefits that depend on a−i. This

cooperation parameter is likely to be a positive function of other siblings’proximity because siblings

can share the costs of looking after parents. This term, however, becomes negative under the

bequest motive hypothesis discussed in Bernheim, Schleifer, and Summers (1985) – the presence

of another sibling taking care of the parent reduces transfers from the parent. The cooperation

term, uγi (N), may also capture the benefit of proximate living that is unrelated to the parent; for

example, children may enjoy living close to each other and they may provide childcare to their

nephews and nieces.9 We normalize this term as uγi (1) = 0 without loss of generality, that is, when

child i is the only child near the parent, child i’s utility is uαi (1) + uβi .

4.3 Equilibrium and Effi ciency Benchmarks

Siblings make location decisions by birth order. Their preferences and the game structure are

known to every sibling. In this sequential game, child i’s strategy, si ∈ Si, specifies the child’s

9 In reality, siblings living near one another may enjoy this benefit even if they do not live with their parent. In
our setup, the utility flow, uγi (N), only occurs when siblings live near the parent.
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decision at every decision node (thus note the difference between ai and si). A subgame-perfect

Nash equilibrium (SPNE) is obtained when no child expects to gain from individually deviating

from their equilibrium strategy in every subgame. Every finite game with perfect information has a

pure-strategy SPNE (Zermelo’s theorem).10 In this study, we only consider pure strategies. In our

perfect-information setup, mixed strategies are irrelevant because every decision node has a choice

that is strictly better than the other.

The sequential nature of the game is illustrated in the extensive-form representation in Figure 1.

The figure shows four possible SPNE when the first child chooses to live nearby. Because the second

child has two decision nodes, the choice set of the second child comprises four strategies, which

we refer to as always far, imitate, preempted, and always near, as shown in Figure 1. Preempted,

for example, refers to the second child’s strategy of staying near the parent only when the older

sibling moves away. Given the payoffs at each terminal node, we can find the SPNE outcome and

strategies by sequentially solving the choice problem at each decision node from the youngest child

to the oldest child (backward induction). Note that in Figure 1, if the first child lives nearby,

two strategies of the second child, always far and preempted, lead to the same game outcome –

(Near, Far), because the difference between always far and preempted lies only in the unobservable

off-the-equilibrium path. In estimation, we exploit this many-to-one mapping structure.

To examine the desirability of an equilibrium outcome, we use two effi ciency measures: (1)

Pareto effi ciency and (2) effi ciency in joint utility. Even if a game has a unique SPNE, it may

have a Pareto-improving (non-equilibrium) outcome, which constitutes the well-known prisoners’

dilemma. Effi ciency in joint utility, or Kaldor-Hicks effi ciency, concerns the sum of siblings’utility.

Although this criterion does not guarantee a Pareto improvement, it is sensible to study this

10For Zermelo’s theorem, see Mas-Colell, Whinston, and Green (1995), page 272.
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Figure 1: Strategies and Outcomes in Extensive-Form Presentation

effi ciency measure because it has implications for implementable compensation schemes.11

The following examples in the normal form illustrate the relationship between these concepts:

Example 1: Example 2: Example 3:

a2 = 1 a2 = 0 a2 = 1 a2 = 0 a2 = 1 a2 = 0

a1 = 1 (2, 2) (−1, 1) a1 = 1 (1, 1) (−1, 2) a1 = 1 (−1,−1) (−2, 4)

a1 = 0 (1,−1) (0, 0) a1 = 0 (2,−1) (0, 0) a1 = 0 (4,−2) (0, 0)

Without the sequential structure, Example 1 has two Nash equilibria, (Near, Near) and (Far, Far).

The former is Pareto dominating and the latter is so-called coordination failure. Once we intro-

duce the decision order, (Near, Near) becomes the only SPNE outcome.12 Example 2 shows the

prisoners’ dilemma. (Near, Near) is no longer an equilibrium, but it remains Pareto dominating

and hence creates Pareto ineffi ciency in the equilibrium. The unique equilibrium in Example 3,

(Far, Far), is Pareto effi cient but not joint-utility effi cient. The family can achieve greater joint

utility at (Near, Far) or (Far, Near) – at the expense of either sibling’s disutility. If compensation

11Note that our framework does not include parents’welfare, although this may be partly captured by the children’s
altruism parameter. The terms “ineffi ciency”and “under-provision” in this study should be interpreted as such. If
proximate living increases parental utility, our ineffi ciency measures are the lower bound of family ineffi ciency.
12Although we do not discuss it here, there is a normal-form representation corresponding to the sequential game.
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is possible, these effi cient outcomes will be chosen.

Altruism, private cost, and cooperation in our model govern the game structure in each fam-

ily. For example, assuming a constant altruism (i.e. uα (N = 1) = uα (N = 2)), the payoff matrix

in Example 1 corresponds to
(
uai , u

β
i , u

γ
i

)
= (1,−2, 3).13 Similarly,

(
uai , u

β
i , u

γ
i

)
= (2,−3, 2) in

Example 2, and (4,−6, 1) in Example 3. A negative cooperation leads to an anti-coordination

game (also known as a congestion game), as is typical in entry games. Example 4 assumes(
uai , u

β
i , u

γ
i

)
= (2,−1,−2), and has two Nash equilibria, (Near, Far) and (Far, Near). A smaller uγi

leads to a larger first-mover advantage. When the sequence is introduced, the SPNE is (Far, Near),

and child 1 enjoys higher utility than child 2. Example 5 shows a rather rare but interesting case.

Its normal form has a unique Nash equilibrium (Near, Far), in which child 1 plays a dominant

strategy. However, the SPNE is (Far, Near), in which child 1 receives higher utility by not playing

the normal-form dominant strategy. The decision order provides child 1 with a commitment device

and hence a first-mover advantage.

Example 4: Example 5:

a2 = 1 a2 = 0 a2 = 1 a2 = 0

a1 = 1 (−1,−1) (1, 2) a1 = 1 (0.5, 0.25) (0.2, 0.26)

a1 = 0 (2, 1) (0, 0) a1 = 0 (0.4, 0.01) (0, 0)

4.4 Theoretical Predictions

The main theoretical predictions in symmetric two-player games are summarized as follows. First,

joint-utility ineffi ciency increases with the absolute size of the two sources of externality – altruism,

uα, and cooperation, uγ . Both positive and negative values of uγ enlarge ineffi ciency. The under-

13To see this, use u1 (1, 1) = uα + uβ + uγ = 2, u1 (1, 0) = uα + uβ = −1, and u1 (0, 1) = uα = 1.
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provision of proximate living results from positive values of uα and uγ because children do not take

into consideration positive externality to other siblings. Similarly, if uγ < 0, excessive participation

may occur, creating a setting similar to the standard entry game.14 When there is no externality

(uα = uγ = 0), the SPNE outcome maximizes joint utility.

Second, the prisoners’dilemma case only appears when uα > 0, uγ > 0, and uβ < 0, i.e. when

cooperation increases payoffs but the incentive to free-ride exists. Its associated Pareto ineffi ciency

increases as uα and uγ become large.

Third, the size of the first-mover advantage depends on strategic substitutability. Gal-Or (1985)

studies a two-player Stackelberg game and proves that when the reaction functions of the players

are downwards (upwards) sloping, the first mover earns higher (lower) profits. The same principle

applies here. Consider child 1’s utility in a two-child family:

u1 (a1 = 1, a2 = 1) = uα1 + uβ1 + uγ1 , u1 (a1 = 1, a2 = 0) = uα1 + uβ1 ,

u1 (a1 = 0, a2 = 1) = uα1 , u1 (a1 = 0, a2 = 0) = 0.
(2)

Strategic substitutability in our two-player setup can be studied based on

[u1 (1, 1)− u1 (0, 1)]− [u1 (1, 0)− u1 (0, 0)] = −uα1 + uγ1 .

Analogous to Gal-Or’s (1985) argument, when the payoff function exhibits decreasing difference

(−uα1 + uγ1 < 0), it implies strategic substitutability and we observe a larger first-mover advantage.

If cooperation benefits siblings (uγ > 0), it reduces the size of the first-mover advantage. Strategic

complements (or a supermodular game) may also result from a small uα and/or large uγ . In

14Both positive uα and negative uγ create strategic substitutability, but the former leads to under-participation
and the latter to excessive-participation. This makes our setting different from the standard entry game.
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our symmetric binary setup, however, a second-mover advantage never appears because strategic

complementarity degenerates the game into the choice between (Near, Near) and (Far, Far) and

at the same time, the first mover is never worse off. Decreasing difference is also necessary for

anti-coordination games such as Example 4 above.

In summary, if we find uα > 0 and uγ > 0, this suggests: positive externality and free-riding

among siblings; the under-provision of proximate living; possible prisoners’dilemma; and, if uγ

and uα are of similar size, a small first-mover advantage. Finally, the extent of externality and

distortion depends on the size of uα and uγ relative to the size of uβ. If the absolute value of uβ is

dominantly large, the family is more likely to achieve the joint-utility optimum.

5 Estimation

5.1 Random Term

To match the model with the data, we need an individual-specific random term. We assume an

additive random term, εi, that affects utility from living near the parent. Formally,

{
ui (ai = 0, a−i) = uαi (N) ,

ui (ai = 1, a−i) = uαi (N) + uβi + uγi (N) + εi.
(3)

The random term is assumed to follow a normal distribution independent of
(
uαi , u

β
i , u

γ
i

)
. Under

the assumption of perfect information, εi is unobservable to an econometrician but is observed by

child i’s siblings. The normality assumption implies that the game almost surely has a unique

equilibrium because ties occur with probability measure zero.15

15Here we use the term almost surely rather than generically because from the player’s point of view, the payoff
function is deterministic, unlike games for which game theorists use the term generically.
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As with standard random-utility models, the level of utility is not identified. Assuming the

same variance for every child, we normalize the variance of εi,h to one. Formally,

εh ≡ {εi,h}i=1,...,Ih
∼ Φ

(
Ωh
)
, (4)

where Ωh is an Ih × Ih covariance matrix whose diagonal elements are unity and whose (i, j)

off-diagonal element is ρi,j ∈ (−1, 1), which we parameterize as

ρi,j = Xρ
i,jθ

ρ, (5)

where θρ is a vector of parameters and Xρ
i,j is a set of relational variables between children i and

j, such as their age difference.

5.2 Specifying Functional Forms

For estimation, we also need to specify the functional forms of uαi (N) , uβi , and uγi (N). Let

Xα
i , X

β
i , and X

γ
i be vectors of covariates observable to the econometrician including a constant

term. Below, we report the results of the following four specifications. Specification [1] imposes

uαi (N) = uγi (N) = 0, uβi = Xβ
i β, and ρi,j = 0. This specification implies no interdependency

between siblings, and the model degenerates to a standard binary probit model. Specification [2]

allows ρi,j to be some constant, ρ0, so that the preferences of siblings may correlate. Specification

[3] introduces externality in the most parsimonious way: uαi (N) = α0, u
β
i = Xβ

i β, u
γ
i (N) = 0,

and ρi,j = ρ0. Specification [4] allows externality to vary depending on N and the covariates.

22



Specifically,

uαi (N) = I [N ≥ 1] · exp {Xα
i α0 + α1 · I [N ≥ 2] + α2 · I [N ≥ 3]} , (6)

uβi = Xβ
i β, and

uγi (N) = Xγ
i γ0 · (I [N ≥ 2] + γ1 · (N − 2) · I [N ≥ 3]) ,

where α1, α2, and γ1 are scalar parameters, and α0, β, and γ0 are vectors of coeffi cient parameters,

which allow preference heterogeneity based on observables. In our setup, a negative value of uαi (N)

has no sensible interpretation because it implies a situation in which a child receives disutility if

one of the children lives near the parent, irrespective of which child that is. After we estimate

Specification [3] and confirm a positive estimate of α0, we introduce heterogeneity in this term

using the exponential function to guarantee positive values. As discussed below, we have attempted

many alternative specifications to (6), and the main results are found to be robust.

5.3 Identification

To understand how our structural parameters are identified, take a simple model of two-child

families as an example:
(
uαi (N) , uβi , u

γ
i (N)

)
= (α0, β0, γ0) and ρi,j = 0. First, consider the

choice problem of child 2 who observes that child 1 chooses to live near the parent. This binary

choice problem compares u2 (a2 = 1, a1 = 1) = α0 + β0 + γ0 + ε2 and u2 (a2 = 0, a1 = 1) = α0, and

thus allows us to identify β0 + γ0. Similarly, when child 1 chooses to live far, we identify α0 + β0.

These two values determine the degree of strategic substitutability, α0 − γ0. When we assume no

cooperation effect (i.e. γ0 = 0), the identification of α0 and β0 follows.

If γ0 6= 0, the rest of the identification relies on sequential interaction. To illustrate this point,
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consider the following two families: (1) free-riding siblings: (α0, β0, γ0) = (2,−2, 0) and (2) siblings

who hate each other: (α0, β0, γ0) = (0, 0,−2). Both types of family result in α0 +β0 = 0, β0 +γ0 =

−2, and α0 − γ0 = 2, thus these two family types are indistinguishable when studying the choice

problem of child 2. In this particular example, the payoff function exhibits decreasing difference

(−α0 + γ0 = −2 < 0). Under decreasing difference, child 2 never chooses the imitate strategy

because for imitate to be optimal, the net gain of living near must be larger when child 1 chooses

near than when child 1 chooses far. Thus, we will observe one of the other three strategies, always

far, preempted, and always near, depending on the value of ε2. The last step of the identification

is achieved by studying child 1’s choice problem when child 2 takes the strategy preempted by

comparing u1 (a1 = 1, a2 = 0) = α0 + β0 + ε1 and u1 (a1 = 0, a2 = 1) = α0, and thus identifying

β0. If we observe that child 1 almost always chooses to live far when child 2 takes the preempted

strategy, it implies a larger α0 and a smaller β0, i.e. siblings with free-riding. In the second type

of family, we will observe child 1 choosing “near” and “far”with the same probability. In other

words, the size of the birth-order asymmetry given the size of the first-mover advantage provides

essential information for separately identifying the three parameters.

The identification of ρ also relies on sequential interaction. Positive correlation between the

location decisions of siblings can be generated by positive ρ and positive γ0. Negative correlation

between the location decisions of siblings can be generated by negative ρ and positive α. We can

nevertheless identify ρ because of the fact that any correlation generated by ρ is unrelated to the

sequence, whereas externalities caused by α and γ imply sequential interaction.
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5.4 Method of Simulated Likelihood

The estimation relies on the maximum likelihood (ML) estimation in which the game is solved for

an equilibrium outcome, a∗h. Denote the observed family location configuration as a
o
h ∈ {0, 1}

Ih .

The ML problem is written as

θ̂ML = arg max
θ

{
1

H

H∑
h

ln Prρ [aoh = a∗h(Xh, εh; α, β, γ)]

}
, (7)

where θ is the vector of the model parameters, (α, β, γ, ρ), and X is the union of Xα
i , X

β
i , and

Xγ
i . The intuition behind the likelihood function is that, given X and (α, β, γ), the location

configuration is determined by ε, and hence the distribution of ε determines the probability of a

location configuration.

The probability term in (7) does not have an analytical form due to multidimensional inte-

grals over the εh space. When the dimension of εh is more than two, computationally demanding

numerical approximation, such as the quadrature method, is impractical. For high-dimensional

integration, the maximum simulated likelihood (MSL) method, which utilizes Monte Carlo inte-

gration, has been developed in the literature. The most straightforward simulator for MSL is the

crude frequency simulator. Given the model parameters, data, and the assumed distribution of εh,

the procedure takes a large number of random draws. For each random draw ε̃h, an equilibrium

location configuration, ã∗h, is solved by backward induction. The probability in (7) is then obtained

based on how many times the predicted equilibrium outcome coincides with the observed outcome

out of the number of simulation draws. Although this simulator provides a consistent estimate of

the probability, it is ineffi cient and requires a large number of simulation draws, and the estimation

of our model is particularly computationally demanding because the game has to be solved for
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each simulation draw. To overcome this computation problem, we use the Monte Carlo integration

method developed by Maruyama (2014).

5.5 Monte Carlo Integration with GHK Simulator

Maruyama (2014) develops the Monte Carlo integration method applicable to finite sequential

games with perfect information, in which each player makes a decision by publicly-known exoge-

nous decision order. The proposed method relies on two ideas. First, the MSL procedure utilizes

the Geweke-Hajivassiliou-Keane (GHK) simulator, the most popular solution for approximating

high-dimensional truncated integrals in probit models. This powerful importance-sampling sim-

ulator recursively truncates the multivariate normal probability density function by decomposing

the multivariate normal distribution into a set of univariate normal distribution, using Cholesky

triangularization.

Strategic interaction, however, complicates high-dimensional truncated integration, causing in-

terdependence among truncation thresholds, which undermines the ground of the recursive con-

ditioning approach. The second building block of the proposed method is the use of the GHK

simulator, not for the observed equilibrium outcome per se, but separately for each of the SPNE

profiles that rationalize the observed equilibrium outcome. In the sequential game framework, the

econometrician does not observe the underlying SPNE because an equilibrium strategy consists of

a complete contingent plan, which includes off-the-equilibrium-path strategies as unobserved coun-

terfactuals. Different realizations of unobservables that lead to different subgame-perfect equilibria

but generate an observationally equivalent game outcome may therefore exist.

Figure 2 visualizes this point. The integration domain of (ε1, ε2) that leads to the location

outcome, (Near, Far), is not rectangular due to the strategic interaction between the two children,
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and hence the standard GHK simulator breaks down for this domain. The use of subgame per-

fection resolves this non-rectangular domain problem. The non-rectangular integration domain for

(Near, Far) consists of two rectangular regions that correspond to two sets of SPNE, labeled (1)

and (3), which correspond to (1) and (3) in the extensive form in Figure 1. Maruyama (2014)

proves that the separate evaluation of the likelihood contribution for each subgame-perfect strat-

egy profile makes it possible to control for the unobserved off-the-equilibrium-path strategies so

that the recursive conditioning of the GHK simulator works by making the domain of Monte Carlo

integration (hyper-)rectangular.

ε2

ε1

(Near, Far)­(1)

(Far, Near)

(Far, Far)

(Near, Near)

Younger child: always far preempted always near

(Near,Far)­(3)

Figure 2: Dividing Observed Location Outcome into Strategy Profiles

Based on this logic, we obtain Prρ [aoh = a∗h(Xh, εh; α, β, γ)] in (7) as follows. First, the complete

list of SPNE profiles that rationalize the observed location configuration, aoh, is identified. Second,

for each SPNE on the list, its associated probability is computed by the standard GHK simulator.

In applying the GHK simulator, we sequentially calculate the truncation thresholds, i.e. the interval

within which each child’s random term, εi,h, has to fall for the SPNE to be realized. Lastly, we

obtain the probability of the observed location configuration by summing the probabilities of all
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the SPNE profiles on the list.

6 Results

6.1 Probit Results

It is useful to first summarize the results from a simple probit model, which serves as a benchmark

for extended specifications. In addition to its reduced-form interpretation, the probit specification

offers a simple random-utility-model interpretation under the following assumptions: each child

makes his/her location decision independently; his/her decision has no implications for the other

children; and each child’s unobserved preference component is distributed as an i.i.d. normal

distribution.

The results are reported in Column [1] of Table 3. Parents who have a child living nearby tend

to be old widowed parents with limited education and poor health who live in their owned home in

an urban area. Proximate living is less likely for white parents and single but non-widowed fathers.

Child variables are also relevant. Proximate living is less likely for older children (after controlling

for parental age). Married children are less likely to live near their parents than single children.

This is especially the case for daughters, probably because married daughters are more likely to live

near their parents-in-law than married sons. This marriage effect is slightly offset by the presence

of their children (grandparenting effect). Education moves children away from their parents; both

C_College and C_SomeCollege have negative and significant coeffi cient estimates. These findings

are consistent with Checkovich and Stern (2002), Byrne, Goeree, Hiedemann, and Stern (2009),

and Compton and Pollak (2013).

[Insert Table 3: Estimated Parameters]
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6.2 Specifications with Interactions among Siblings

The first step to building interdependence among siblings is to introduce correlation in the random

term, {εi,h}Ihi=1. Specification [2] has a covariance matrix, Ωh, whose off-diagonal elements are all

equal to a constant, ρ0 ∈ (−1, 1), which captures resemblance in the preferences of siblings, shared

environments, and a certain behavioral interaction between siblings. The results shown in Column

[2] of Table 3 testify to a significant positive correlation in the random term.

Now we explicitly introduce externality, first by including a constant altruism, uαi (N) = α0. As

shown in Column [3], we find a positive and significant estimate of α0.16 To confirm the robustness

of this result, we estimate Specification [3] separately using each wave of the HRS from 1998 to

2010, and we find that the estimates of α and ρ are always positive and highly significant.

Whereas there is no substantial change in coeffi cient estimates when we compare Specifications

[1] - [3], the goodness-of-fit improves over every step of elaboration. In terms of log L, a decent

improvement results from incorporating externality α, but introducing correlation ρ makes the

largest contribution. The proportion of correctly predicted observations, which are defined on the

basis of location configuration with the highest predicted probability, also shows improvement.

Although the simple probit model performs the best in predicting at the child level, it performs

the worst at the family level because it ignores similarities and interactions among siblings.

6.3 Specification with Heterogeneous Externality

To introduce cooperation and allow for heterogeneity in externality, we now parameterize uαi , u
γ
i ,

and ρi,j as specified in (5) and (6), by introducing covariates in each term. Including the full set

16This specification leads to an even larger ρ than Specification [2] because altruism creates strategic substitutability,
and omitting altruism forces the correlation term to capture this negative behavioral correlation, resulting in a smaller
estimate of ρ.
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of covariates in every term is impractical because it makes the model substantially flexible and

makes the precise identification of parameters significantly diffi cult. We thus need a reasonably

general yet parsimonious specification. Two guidelines have led us to our preferred specification.

The first is the behavioral interpretation of each term: variables in uαi are supposed to be the

determinants of innate altruism, and variables in uγi should affect the cost and benefit of cooperation.

Second, we adjust the sets of covariates by attempting various specifications. We exclude covariates

whose coeffi cient parameters are always estimated with a large standard error and/or without

statistical and economic significance.17 We find our main results are reasonably robust across these

modifications. Regarding correlation between siblings, we allow ρi,j to depend on the age and

gender differences between children i and j.

Column [4] of Table 3 reports the results of the full model. Compared to Specification [3],

the goodness-of-fit is improved both in terms of log likelihood and correct prediction, indicating

the importance of heterogeneity in externality. The LR test confirms that the improvement is

significant at standard significance levels. Figure 3 compares the predicted distributions of the

location configurations of Specifications [1] - [4] with the actual distribution in data, illustrating a

step-by-step improvement in model prediction.

Correlation in the random term is stronger for siblings who are closer in age and of the same

sex than for other siblings, indicating similarity in their preferences and environments. The altru-

ism parameter, uαi , varies across children and families. According to the statistically significant

coeffi cients in uαi , altruism is the strongest toward single mothers with limited education and poor

health. The estimates of α1 and α2 are small and insignificant, indicating that what is important

17For example, including parental health in all three terms makes identification and convergence quite unreliable,
and thus we take a conservative approach and not to include it in uγi .
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Figure 3: Predicted and Observed Location Configurations

to children is whether at least one child lives near the parent. Based on the distribution of Xα
i ,

the value of uαi ranges [0.120, 1.370] with its mean 0.377.18 The cooperation term, uγi , also ex-

hibits heterogeneity, ranging [−0.046, 0.361] with its mean 0.199. The absolute size of uγi is overall

smaller than that of uαi . The negative and significant coeffi cient on C_age in u
γ
i indicates greater

cooperation between younger children. One interpretation of this heterogeneity is that younger

siblings have less experience of care provision, hence mutual assistance reduces the cost of provid-

ing care and attention. Alternatively, younger siblings may enjoy living close to each other. This

interpretation has little to do with caregiving. Similarly to α1 and α2, the estimate of γ1 indicates

that having the third sibling nearby has no significant effect on the degree of cooperation. Thus,

18We also estimate a model with a linearly parameterized uαi , instead of using the exponential function. Its results
imply that uαi sometimes takes a small negative value, although the vast majority of children have a positive u

α
i . We

find no substantial difference in the model fit and main findings between these two models.
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externality does not distort the behavior of families in which more than two siblings choose to live

near parents.

Heterogeneity in altruism and cooperation determines the extent of ineffi ciency and strategic

interaction in each family. Ineffi ciency is larger in families with larger uαi and u
γ
i , and our results

reveal that these are families with a single mother with limited education, poor health, and relatively

younger children. Prisoners’dilemma is more likely in these families. First-mover advantage, on

the other hand, is larger when uαi and is larger and u
γ
i is smaller. We find that relatively older

children do not value cooperation greatly, and if their parent is a non-widowed single mother with

limited education and poor health, the incentive to free-ride is large. The first child also has a large

first-mover advantage.

The ranges of uαi and u
γ
i indicate that the vast majority of families show a certain altruism

and cooperation. On the other hand, the range of Xβ
i β is [−2.193, 0.861] with its mean −0.545.

Given that the variance of εi is unity, the range of the three preference components suggests that

although the two externalities are not negligible, the private cost component, uβi +εi , is the primary

determinant of location decisions.

Examining the estimated coeffi cients on covariates that appear in both uβi and u
α
i offers addi-

tional insight. Whereas Specifications [1]-[3] find that parents with poor health are more likely to

have their children nearby, this effect in uβi in Specification [4] becomes smaller and we find that

poor health significantly increases uαi . This implies that poor parental health induces intergenera-

tional proximity both (1) because children are more concerned about the well-being of those parents

and (2) because poor parental health increases children’s net utility of living near the parent. The

latter holds despite the expected large cost of care provision, probably because children value shar-

ing time with parents who have shorter life expectancy. The education levels of children provide
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another contrast. Specifications [1]-[3] reveal a significant negative relationship between the child’s

education level and that child’s propensity to live near their parents. Specification [4] confirms that

this negative effect arises completely through the private utility component, uβi , probably reflecting

the high opportunity cost for educated children of staying near the parent. The estimated coeffi -

cients in uαi show no evidence that well-educated children are less concerned about the well-being

of their parents than children with limited education.

Lastly, our coeffi cient estimates offer a partial explanation for the birth-order asymmetry. We

find a negative age effect in both uβi and u
γ
i ; the private cost of living near the parent increases

with age, and an additional sibling near the parent benefits older siblings less. Both of these effects

contribute to the lower tendency of older siblings to live near their parents, and these effects have

nothing to do with first-mover advantage. At the same time, the significant estimates of altruism,

uαi , and cooperation, u
γ
i , indicate the existence of sequential strategic interaction. In the next

section, we quantify how much of the birth-order asymmetry in our data can be attributed to the

first-mover advantage.

7 Counterfactual Simulations

7.1 Method

Counterfactual simulations allow us to quantitatively illustrate how the game structure and game

outcomes vary across families under different settings. In the counterfactual exercises, we simulate

location configurations under certain assumptions based on estimated parameters, θ̂, and data,{
aoi,h, Xi,h

}Ih
i=1
. This simulation is not straightforward for several reasons. First, if we knew the

true values of εi,h, solving for equilibrium and optimal location configurations would be trivial, but
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we do not observe εi,h in the data. We thus rely on Monte Carlo simulations, in which we generate

simulated values of εi,h that rationalize the observed location configuration. For example, we can

compute the probability that the siblings in family h result in location configuration ãh by taking

the following integral over the domain of εh that rationalizes family h’s observed outcome, aoh. By

denoting this integration domain over the space of εh as ∆ (aoh) ,

Pr (ãh) =
1

Pr
(
εh ∈ ∆

(
aoh
)) ∫

εh∈∆(aoh)
I [ãh = a∗h (Xh, εh)]φ (εh) dεh,

where φ (εh) is the density function of εh, and a∗h (Xh, εh) is the solution function. Second, be-

cause this multidimensional integral does not have an analytical solution, a simulation method

is necessary to numerically approximate the integral. Third, this simulation-based integration is

complicated by strategic interaction among siblings. We evaluate this integral and the probability

in the denominator by the Monte Carlo integration method explained in Section 5.5.

7.2 Normal-Form Game Structure

We first examine the simulated normal-form representation of corresponding simultaneous games,

which provides useful information to understand the nature of the games played by American

siblings. Table 4 characterizes the payoff matrices of two-child families by observed SPNE location

configuration. The top panel reports whether siblings have dominant strategies in their payoff

matrix. In 86.2% of two-child families, both children have a dominant strategy. This reflects

that for the majority of children, the size of private cost, uβi , is so large that altruism, u
α
i , and

cooperation, uγi , has no influence on their decisions. It is trivial to show that, when every child
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has a dominant strategy, the equilibrium outcome of the simultaneous game is always achieved as

an SPNE. Table 4 thus highlights limited strategic behavior in two-child families. The table also

shows that when we observe (Far, Far) or (Near, Near) in the data, it almost always implies that

both children in those families have a dominant strategy. The last column of Table 4 reports a

simulation in which we double uαi for every family. The share of families in which both children

have a dominant strategy reduces to 62.7%. A larger externality induces strategic behavior to a

greater extent.

[Insert Table 4: Characteristics of Simultaneous Normal-Form Games in Two-Child Families]

The bottom panel of Table 4 characterizes the Nash equilibrium of the simultaneous game,

showing limited strategic behavior even more clearly. More than 99% of the two-child families have

a unique simultaneous equilibrium and it is rare to have no equilibrium or multiple equilibria. In

most cases, the unique equilibrium in the simultaneous game actually occurs as an SPNE outcome.

The only non-negligible gap between the normal-form equilibrium outcome and the SPNE out-

come is found among the families that choose (Far, Near). This group includes not only families

whose normal-form equilibrium is (Far, Near) but also families whose normal-form equilibrium is

(Near, Far) and families with two equilibria that consist of (Far, Near) and (Near, Far). This gap

suggests the presence of first-mover advantage.

7.3 Joint-Utility Optimal Location Configuration

We now turn to the joint-utility ineffi ciency of SPNE location configurations. We simulate the

location configuration that maximizes each family’s utility sum, which is compared in Table 5

with the actual location configuration by family size. There are many families in which the optimal
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number of children living near the parent is one or more but no child lives nearby. This gap between

the SPNE and the joint-utility optimum increases with family size because positive externality is

shared by more children. The last row in the table shows that in multi-child families, 18.3% more

parents (= 32.5%− 14.2%) would have had at least one child living nearby had location decisions

been made cooperatively.19 On the other hand, the over-provision of proximate living exists among

three- and four-child families but much less frequently.

[Insert Table 5: Observed and Family-Optimal Location Configurations by Family Size]

The observed SPNE location configurations can be classified into three groups: (1) joint-utility

optimal; (2) joint-utility suboptimal but Pareto effi cient; and (3) prisoners’dilemma, that is, there

is a non-SPNE location configuration that is Pareto-dominating. Table 6 presents the shares of

these three groups by family size across different externality parameter values. Panel [1], which

is based on the estimated parameters, shows that prisoners’dilemma is observed only for 2.0% of

multi-child families, but that its presence increases with family size. More importantly, although

98.0% of multi-child families achieve Pareto effi ciency, more than a quarter of them do not achieve

the joint-utility optimum. This joint-utility ineffi ciency is particularly large in three- and four-child

families: only 65.6% of those families achieve the joint-utility optimum. The simulation results

reported in Panels [2]-[4] confirm the theoretical predictions: larger altruism, uαi , and cooperation,

uγi , lead to larger joint-utility ineffi ciency and Pareto ineffi ciency, and u
α
i explains a larger part of

joint-utility ineffi ciency than uγi , whereas a large u
γ
i is necessary for prisoners’dilemma to occur.

[Insert Table 6: Effi ciency Type by Family Size]

19Knoef and Kooreman (2011) also find a large implication of ineffi ciency in joint utility in a similar context.
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Table 7 compares the shares of the effi ciency types in two-child families by observed location

configuration (the top panel) and by joint-utility optimal location configuration (the bottom panel).

The first number in each cell represents its column share and the second number its row share. The

table illustrates how prisoners’dilemma occurs. In families in the prisoners’dilemma situation,

70.5% have no one near the parent despite the fact that (Near, Near) is Pareto dominating. The

remaining 29.5% have the second child near the parent, although (Near, Far) is Pareto dominating.

Joint-utility ineffi ciency occurs in a similar way. When (Far, Far) is joint-utility optimal, a family

can always achieve it as an SPNE outcome. In this type of family, positive externality is very

small compared to large private costs. When we observe (Near, Near) in the data, it is always the

joint-utility optimal, whereas when we observe (Far, Far), it is joint-utility effi cient only for 61.5%

of those families, showing the importance of the under-provision of proximate living, rather than

over-provision.

[Insert Table 7: Location Configurations and Effi ciency Type in Two-Child Families]

7.4 First-Mover Advantage

To quantify the first-mover advantage, an ideal benchmark is the equilibrium outcome that arises

in the simultaneous setup, but because simulating simultaneous games is not straightforward due

to the multiplicity of equilibria, we instead employ a sequential game with reversed order (i.e. the

youngest child makes a decision first and the oldest last). If order reversion does not affect the

game outcome, it implies negligible first-mover advantage. The top panel in Table 8 compares the

simulated location configurations of two-child families in the observed and reverse-order SPNE. The

bottom panel investigates how reversing the order alters each child’s utility. Overall, the sequential

interaction is negligible. Reversing the order affects only 1.9% of two-child families. When it does
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affect a family, it is almost always the case that the SPNE outcome changes from (Far, Near) to

(Near, Far), decreasing the first child’s utility and increasing the second child’s utility. The joint

utility may or may not increase. If we double the degree of altruism, the share of families with a

first-mover advantage increases from 1.9% to 9.3%.

Konrad, Künemund, Lommerud, and Robledo (2002) argue that observed birth-order asymme-

try in location supports the first-mover advantage hypothesis. In our data, the number of two-child

families that result in (Far, Near) and (Near, Far) is 658 and 564, respectively. The difference

between these two numbers, 94 families, is the birth-order asymmetry in our data. An interesting

question is how much of this difference is attributable to the first-mover advantage. As shown in

Table 8, 7.8% of the 658 families with (Far, Near), or 51 families, change their location configu-

ration from (Far, Near) to (Near, Far) after order reversion. If we assume that imposing reversed

order affects twice as many families as imposing simultaneous move, removing the first-mover ad-

vantage should affect 26 (half of 51) families and result in 632 and 590 families with (Far, Near)

and (Near, Far) configurations, respectively. The resulting difference of 42 families is the remaining

birth-order asymmetry that is unexplained by the first-mover advantage. Hence, even though the

first-mover advantage implied by our estimates is small, birth-order asymmetry in the US data is

also small, thus the first-mover advantage explains roughly half of the asymmetry (42/94=45%).

[Insert Table 8: Reverse-Order SPNE in Two-Child Families]
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8 Robustness and Validity of Results

8.1 Sensitivity Check

We have attempted various sample selection criteria and functional forms, and the main findings

are fairly robust. In this subsection, we discuss selected robustness tests that are critical to the

interpretation of our results. The detailed results of these tests are reported in the Appendix.

Measuring Decision Order If the decision order we impose in estimation (i.e. the birth order

recorded in the data) contains measurement error, the estimated strategic effect may be biased

toward zero. Although we expect little measurement error in the recorded birth order, birth order

may not necessarily coincide with the actual order of location decisions. There may be a number

of temporary moves when siblings are in their twenties, and some of those moves may become

permanent; for example, younger siblings may make a permanent move before their older siblings

complete post-graduate education. Conceptually, decision order in our model is a broader notion

than the mere timing of migration, involving any credible commitment related to a permanent

move, such as the choice of occupation and spouse. Hence, although younger siblings may make a

permanent location choice before their older siblings, this does not necessarily contradict the use

of birth order. Nevertheless, an important question is how well birth order approximates the true

decision order, because the degree of measurement error in the decision order determines the size of

the bias. Maruyama (2014) conducts a Monte Carlo experiment by applying the same estimation

method for a sequential entry game, and reports that such bias tends to be marginal if the decision

order is correctly specified in more than 90% of game observations.

One way to investigate potential bias resulting from misspecified order is to estimate the same
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models excluding siblings of similar age. In this way, birth order reflects the true decision order

more accurately and the strategic effect will be estimated more precisely. Specifically, we exclude

families that have a pair of siblings whose age difference is only one year and re-estimate the same

model. Our main results are not affected by this additional restriction,20 nor when we increase the

minimum age difference to three years.

Are Only Children Special? We include one-child families in our sample because they aid

identification; however, the results could be biased if only children differ considerably from children

with siblings (after controlling for observable characteristics). To address this concern, we estimate

our model without one-child families. We find that excluding one-child families makes the para-

meter estimates less robust. Standard errors tend to be larger with slightly worse goodness-of-fit.

Although these findings suggest that one-child families play an important role in estimation, the

results are consistent with our main results overall, indicating that our results are unlikely to be

an artifact generated by the distinct nature of only children.

Potential Bias Due to the Cross-Sectional Approach To quantify sequential strategic inter-

action in a tractable yet intuitive manner, this study takes a cross-sectional approach, abstracting

from the dynamic aspects of siblings’location decisions with the exception of birth order. For our

estimates to be meaningful and credible, our empirical framework must be approximately consis-

tent with the underlying data generating process. In particular, the explanatory variables used

in estimation are taken from information recorded many years after children have made their lo-

20We find slightly larger estimates of externality as well as a smaller proportion of families experiencing ineffi cient
family location. These two findings arise at the same time because although the sample of siblings with a larger age
gap leads to a larger estimate of strategic effect, such siblings tend to have more diverse characteristics than siblings
of similar age. When players differ to a greater extent, they are more likely to have a dominant strategy and game
outcomes depend less on strategic interaction.
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cation decisions. The results can be interpreted consistently with our behavioral model if all our

explanatory variables were either observed or accurately predicted at the time children made those

decisions. For this reason, we have carefully selected our independent variables such that they can

be argued as being time-invariant or reasonably stable and predictable in the long run. Never-

theless, a number of factors may undermine the validity of our cross-sectional approach. A child’s

location decision might have a long-term effect on our explanatory variables, such as parental health

(reverse causality). Location and spouse might be determined at the same time (simultaneity). A

child might have responded to recent parental health decline many years after the child first left

the parent (misspecification of the time frame), and current variables might have accumulated sto-

chastic errors since the child makes the decision; thus they may lead to downward bias even if the

child’s prediction is not biased (measurement error).

To address these concerns, we estimate a model that excludes parental health and marital

variables, which may be endogenous events in later life. We find that the results of the simplified

model are consistent with the full model overall, despite its poorer model fit. Counterfactual

simulation results also remain similar. This finding provides some assurance that our main findings

are not driven by the time inconsistency due to the time-variant variables.21

8.2 Alternative Behavioral Assumptions

We have so far centered our analysis on perfect-information sequential games. To investigate the

appropriateness of this behavioral assumption, we discuss three alternative models.

21A more conservative view is that even if our cross-sectional approach does not lead to precise estimates, it is an
empirical model exercise that focuses not on the precision of estimates but on finding models with new features that
better fit the data. It is not uncommon for the empirical game-theoretic analysis of an inherently dynamic subject to
start with a cross-sectional framework. The econometric literature on firms’market entry, for example, started with
the analysis of a cross-sectional snapshot of market structures.
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Cooperative Maximization First, we examine the assumption of non-cooperative decision

making. This assumption is to some extent justified by the discrete and long-term nature of location

choice, but siblings may be able to arrange enforceable side-payment transfers to achieve the high-

est joint utility possible, as discussed by Engers and Stern (2002). We examine this possibility by

estimating a model of joint-utility maximization. This model uses the same functional-form spec-

ification as our preferred model, namely, (3), (4), and (6), and assumes the following joint-utility

maximization:

max
ah∈{0,1}Ih

Ih∑
i=1

ui (ah) .

We estimate this model by using the multinomial probit framework. Because the multivariate

normal distribution does not have an analytical form, the estimation is based on the method of

simulated likelihood with the GHK simulator.

Incomplete-Information Game To examine the validity of the perfect-information assumption,

we estimate an incomplete-information model, maintaining the same functional-form specification

as before. In this setup, each child makes a decision simultaneously by maximizing expected

utility based on the privately observed value of εi, the distribution of ε−i (conditional on εi),

and “conjectures”of the other siblings’strategies. The conjectures underlie utility maximization

because they affect one’s expected utility. Child i’s strategy, or decision rule, is denoted as ai (εi),

and effectively, it is a threshold value of εi above which child i chooses “near”or ai = 1. A strategy

profile in family h, {ai (εi)}i=1,...,Ih , constitutes a Nash equilibrium if:

aei (εi) = arg max
a∈{0,1}

Eε−i

[
ui

(
a, {aek (εk)}k 6=i , εi

)]
, for i = 1, . . . , Ih. (8)
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We estimate this multivariate probit model using the method of simulated likelihood.

The procedure for constructing the simulated likelihood consists of three key algorithms. The

first is an algorithm to obtain the optimal strategy of child i, a∗i (εi), given the strategies of the sib-

lings, {ak (εk)}k 6=i, by evaluating the net expected utility gain of choosing “near”. For incomplete-

information games, previous studies typically assume that the distribution of the error component

is independent across players, but our random terms are correlated between siblings, and hence,

the optimal strategy, a∗i (εi), needs to be obtained from a conditional normal distribution that in-

corporates the correlation parameters. When child i has more than one sibling, the expectation is

evaluated numerically by the GHK probit simulator.22 The second algorithm obtains the equilib-

rium strategy profile, {aei (εi)}i=1,...,Ih ≡ aeh. This algorithm consists of a numerical iteration loop

that nests the first algorithm inside, and solves the equilibrium strategy profile as a fixed point

in (8).23 We find that this numerical iteration procedure is well-behaved as long as parameter

values are not far from reasonable ranges. Because the mapping defined by (8), f : at → at+1, is

a continuous mapping from RI to RI , the existence of a fixed point is guaranteed by Brouwer’s

fixed point theorem. Although the uniqueness of the equilibrium depends on model parameters, it

is trivial to show the uniqueness as long as f is decreasing or moderately increasing (derivatives

less than one) at any point of RI . In our model, uniqueness is guaranteed under the condition that

the positive cooperation effect does not overwhelmingly dominate the altruism effect to the extent

that the game exhibits strong strategic complementarity at some point on RI . The results of the

22Because the value of εi affects the net utility gain not only as the additive random term but also through
the conditional distribution of ε−i, the optimal decision rule (the optimal threshold value for εi) does not have an
analytical solution. Thus, the optimal strategy is solved by numerical iteration using the fact that expected net utility
gain is given by a continuous increasing function of εi within the region of parameter values of our interest.
23We start the estimation with a1i (εi), the threshold values of εi that make near and far indifferent under the

standard binary probit model. Every time the likelihood value improves, the previously saved initial point is replaced
by the new strategy profile.
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perfect-information model indicate that this condition is very likely to hold. The third algorithm,

based on the equilibrium strategy profile obtained by the above algorithms, computes the likelihood

value. The algorithm conducts Monte Carlo integration over a multivariate normal distribution of

dimension Ih, taking the correlation of εi into account and using the GHK simulator.

Sequential Game with Reversed Order The difference between the perfect-information se-

quential game and the incomplete-information simultaneous game may result from the information

structure and the timing of decisions. A direct way to disentangle these two effects would be to

estimate a perfect-information simultaneous game, but its estimation is not trivial due to the mul-

tiplicity of equilibrium. We instead estimate a perfect-information sequential game with reversed

order, that is, we estimate our preferred model under the assumption that the youngest child makes

the decision first and the oldest last. This experiment allows us to examine the relevance of our

decision order assumption.

Model Fit Comparison Table 9 compares the goodness-of-fit of six alternative models with

different behavioral assumptions: independent maximization under no externalities (Specification

[1]), the non-cooperative perfect-information sequential model (Specifications [3] and [4]), joint

maximization, the non-cooperative private-information model, and the non-cooperative perfect-

information sequential model with reversed order. The last four columns compare different behav-

ioral assumptions based on the same functional form assumption as Specification [4]. The table

reports three comparison measures: the log likelihood values, the Akaike information criterion, and

the percentage of correct prediction.

[Insert Table 9: Comparison of Alternative Behavioral Assumptions]
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Overall, the comparison supports the use of a non-cooperative sequential framework. The joint-

maximization model shows worse goodness-of-fit than the non-cooperative models, indicating the

presence of conflicting self-interest.24 The private-information model fits the data better than the

joint-decision model, but not as well as the perfect-information sequential model. Between these two

lies the model with reversed order, supporting the use of both the perfect-information framework

and birth order.25 We also conduct the same comparison using simpler specifications and find that

our conclusion is not affected.

9 Conclusion

We study externality and strategic interaction among adult siblings regarding their location deci-

sions relative to their elderly parents, by estimating a sequential participation game that exceeds

the scope of previous studies. We find a positive externality and strategic interaction. Siblings make

location decisions non-cooperatively and their free-riding behavior results in the under-provision of

proximate living to their elderly parents. Whereas the size of the strategic behavior is limited, the

impact of the public good problem is striking; in multi-child families, 18.3% more parents would

have had at least one child living nearby had location decisions been made cooperatively.

The complex nature of the subject requires us to employ a tractable framework: we rely on a

cross-sectional approach and do not explicitly model parental utility. We conduct a number of model

comparisons, however, and our parameter estimates consistently support the significant role of the

24Engers and Stern (2002) conduct a similar model comparison in their framework of family long-term care decisions,
and favor a game-theoretic model over a collective model.
25Unlike our finding, Stern’s (2014) study on the location choice game of siblings finds the empirical importance of

private information. This may be because his game-theoretic framework is not as comprehensive as ours or because
his model of private information is more general, in the sense that it incorporates private information in addition to
unobservable common-knowledge heterogeneity.
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non-cooperative behavior of siblings, the empirical relevance of externality, and the empirically

limited role of sequential interaction, largely for the first time in the literature. Validating our

results under a more general setup is left for future research.

The most direct way to achieve the joint-utility optimum is to develop a mechanism that forces

the child with the smallest opportunity cost to assume caregiving obligations regardless of his/her

willingness so that all other siblings can free-ride on this child. Historically, social norms and

traditions in many countries have forced daughters, who supposedly have a smaller opportunity cost

than sons, to fulfill caregiving obligations (see, e.g., Holroyd (2001) and Silverstein, Gans, and Yang

(2006)). These social norms and traditions have served as an enforceable mechanism for families to

achieve a larger joint utility. In modern societies, however, improved gender equality and increased

female labor force participation may have undermined this mechanism and thus reduced the joint

utility of families. The maximum joint utility can also be achieved by a transfer scheme from those

who free-ride to those who provide care, but this option may be diffi cult in practice. Parents can

utilize inheritance to enforce such a transfer, but this option is not available for socioeconomically

disadvantaged parents, who face a particularly severe free-rider problem. Further, this within-

family transfer may not be effective where there is the law of legitim– a statutory fraction of the

decedent’s gross estate from which the decedent cannot disinherit his/her next-of-kin. Free-riding

is thus likely to be more severe in jurisdictions that have legitim, such as Scotland, Japan, and,

until recently, the US state of Louisiana. In general, policies that reduce the private cost of caring

for elderly parents, such as tax benefits for carers, increase proximate living, but if the costs of

such policies are financed by taxing other children equally, the overall welfare effect is ambiguous.

The welfare effect of public support for parents is similarly ambiguous, depending on families’

preferences and how such policies are financed.
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Misleading conclusions may be drawn from future research if the free-rider problem identified

in this study is not taken into consideration. Future research should direct its attention toward

externality, the free-rider problem, and the under-provision of care and attention rather than to

strategic interactions such as the first-mover advantage.

A Results of Selected Robustness Tests

[Insert Table A1: Robustness of Results]
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Table 1: Sibling Location Configurations by Birth Order with  
Implied Shares under Independence 

 
One-child families (N=1,493) 

N of children 
living near 

Total 
share Detailed location configurations with birth order Implied share under 

independence (p=0.404) 

0 48.7% Far: 48.7% 59.6% 
1 51.3% Near: 51.3% 40.4% 

Two-child families (N=2,840) 

N of children 
living near 

Total 
share Detailed location configurations with birth order Implied share under 

independence (p=0.404) 

0 39.6% FF: 39.6% 35.5% 
1 43.1% NF: 19.9% ; FN: 23.2% 48.2% 
2 17.4% NN: 17.4% 16.3% 

Three-child families (N=2,054) 

N of children 
living near 

Total 
share Detailed location configurations with birth order Implied share under 

independence (p=0.404) 

0 30.1% FFF: 30.3% 21.2% 
1 34.3% NFF: 10.2% ; FNF: 11.1% ; FFN: 13.0% 43.1% 
2 23.8% NNF: 7.3% ; NFN: 7.1% FNN: 9.4% 29.2% 
3 11.7% NNN: 11.7% 6.6% 

Four-child families (N=1,283) 

N of children 
living near 

Total 
share Detailed location configurations with birth order 

Implied share 
u/ independence 

(p=0.404) 

0 20.5% FFFF: 20.5% 12.6% 
1 30.4% NFFF: 6.7% ; FNFF: 6.3% ; FFNF: 8.5% ; FFFN: 8.9% 34.2% 
2 24.2% NNFF: 3.1% ; NFNF: 3.4% ; NFFN: 4.7% ; FNNF: 3.3% ; FNFN: 4.9% ; FFNN: 4.8% 34.8% 
3 16.3% NNNF: 3.7% ; NNFN: 4.4% ; NFNN: 3.8% ; FNNN: 4.4% 15.7% 
4 8.7% NNNN: 8.7% 2.7% 

Note: Each digit in the key indicates the proximity of each child to their parents, either far or near, with the first digit representing 
the oldest child, e.g., “FFN” indicates the location configuration of a three-child family in which only the youngest child lives near 
the parent. “N” includes coresidence. As a benchmark, the last column shows the shares computed under the assumption that each 
child makes a location decision independently and chooses “N” with probability 0.404 (=overall average). 

  



 
 

 
 
 

Table 2:  Definition and Summary Statistics of Variables 
Variable Definition Mean Std. Dev. 
Outcome    
Near =1 if the child lives with or within 10 miles of the parent  0.404 0.491 
Parent    
P_cohab =1 if the respondent lives with a partner, regardless of marital status (reference 

group) 
0.447 0.497 

P_father_widow =1 if the respondent is a father living with no partner, widowed 0.062 0.242 
P_father_nonwidow =1 if the respondent is a father living with no partner, not a widow (e.g. 

separated/divorced) 
0.057 0.232 

P_mother_widow =1 if the respondent is a mother living with no partner, widowed 0.302 0.459 
P_mother_nonwidow =1 if the respondent is a mother living with no partner, not a widow (e.g. 

separated/divorced) 
0.132 0.339 

P_age* Parent's age 71.939 7.576 
P_white^ =1 if race is white 0.838 0.369 

P_healthy* The first factor from factor analysis consisting of self-assessed health index, ADL 
and IADL scores (functional limitations expected to last more than 3 months), 
and three indicator variables for ever being diagnosed with diabetes, 
hypertension, and stroke. The larger the healthier. 

-0.033 0.782 

P_College# =1 if highest education is college or post college 0.197 0.398 
P_SomeCollege# =1 if highest education is some college (13 – 15 years of formal education) 0.209 0.407 
P_HighSchool# =1 if highest education is high school (reference group - include 15 observations 

of parents with missing education) 
0.354 0.478 

P_<HighSchool^ =1 if less than 12 years of formal education 0.239 0.427 
P_Geo_HighPop =1 if lives in a metro area of 1 million population /more (reference group) 0.441 0.476 

P_Geo_MedPop =1 if lives in a metro area of 250,000 to 1 million population  0.250 0.433 
P_Geo_LowPop =1 if lives in a metro area of fewer than 250,000 population or non-metro area 0.283 0.450 

P_Geo_missing =1 if geographical information is missing 0.026 0.160 
P_House =1 if owns a residential house 0.698 0.459 
Child    
C_age Child's age 44.775 6.863 
C_male_single =1 if the child is a male and single 0.151 0.358 
C_female_single =1 if the child is a female and single (reference group) 0.154 0.360 
C_male_partner =1 if the child is a male and lives with a partner 0.357 0.479 
C_female_partner =1 if the child is a female and lives with a partner 0.339 0.473 
C_College =1 if the child’s highest education is college or post college 0.324 0.468 
C_SomeCollege =1 if the child’s highest education is some college (13–15 yrs of formal education) 0.212 0.408 
C_HighSchool =1 if the child’s highest education is high school or lower (reference group) 0.345 0.475 
C_EducMiss =1 if the child’s formal education is missing/unknown by parents 0.119 0.324 

C_kids_partner † The number of children of the child when the child is married 1.403 1.522 
C_kids_single The number of children of the child when the child is single 0.352 0.937 
C_age_difference Age difference between child i and child j (absolute value)   
C_sex_difference =1 if child i and child j are of different sex; 0 otherwise   
Wave    
Wave1998 =1 if the data is from wave 1998 (reference group) 0.550 0.497 
Wave2004 =1 if the data is from wave 2004 0.249 0.433 
Wave2010 =1 if the data is from wave 2010 0.200 0.400 
Note:    
^ Both parents if a spouse/partner is present.   
* Average if a spouse/partner is present.   
# The one with higher education if a spouse/partner is present. 
† Information about grandchildren in the 1998 wave is missing for observations in the AHEAD cohorts. We 

use information from the next HRS wave in 2000. 

   

  



 
 

Table 3: Estimated Parameters 
  [1] Probit [2] Constant ρ; 𝑢𝑢𝛼𝛼=0 

(no altruism, constant 
correlation) 

[3] Constant 𝑢𝑢𝛼𝛼 and ρ 
(constant altruism and 

correlation) 

[4] Full model 

 coefficient s.e. coefficient s.e. coefficient s.e. coefficient s.e. 
P_father_widow 0.101*** 0.036 0.104** 0.046 0.109** 0.048 0.093 0.060 
P_father_nonwidow -0.339*** 0.038 -0.351*** 0.047 -0.377*** 0.049 -0.318*** 0.065 
P_mother_widow 0.132*** 0.022 0.132*** 0.028 0.135*** 0.029 0.066* 0.039 
P_mother_nonwidow -0.037 0.029 -0.021 0.035 -0.023 0.037 -0.137** 0.054 
P_age 0.005** 0.002 0.005** 0.002 0.005** 0.002 0.003 0.002 
P_white -0.080*** 0.024 -0.087*** 0.030 -0.090*** 0.031 -0.092*** 0.032 
P_healthy -0.061*** 0.012 -0.065*** 0.015 -0.069*** 0.016 -0.048** 0.020 
P_College -0.227*** 0.026 -0.227*** 0.032 -0.246*** 0.033 -0.254*** 0.043 
P_SomeCollege -0.076*** 0.024 -0.072** 0.030 -0.074** 0.031 -0.094** 0.039 
P_<HighSchool 0.060** 0.023 0.068** 0.030 0.080*** 0.031 0.046 0.038 
P_Geo_MedPop -0.009 0.022 -0.009 0.027 -0.007 0.028 -0.007 0.029 
P_Geo_LowPop -0.091*** 0.021 -0.091*** 0.026 -0.095*** 0.027 -0.095*** 0.028 
P_House 0.093*** 0.020 0.087*** 0.025 0.091*** 0.026 0.096*** 0.026 
C_age -0.014*** 0.002 -0.015*** 0.002 -0.014*** 0.002 -0.008*** 0.003 
C_male_single -0.137*** 0.034 -0.139*** 0.034 -0.134*** 0.033 0.023 0.100 
C_male_partner -0.375*** 0.037 -0.386*** 0.036 -0.378*** 0.035 -0.249** 0.100 
C_female_partner -0.374*** 0.037 -0.376*** 0.037 -0.367*** 0.036 -0.341*** 0.045 
C_College -0.406*** 0.025 -0.396*** 0.026 -0.393*** 0.026 -0.423*** 0.035 
C_SomeCollege -0.070*** 0.026 -0.066** 0.026 -0.069*** 0.026 -0.071** 0.034 
C_kids_partner 0.021*** 0.008 0.021*** 0.008 0.021*** 0.008 0.021*** 0.008 

α0 (=𝑢𝑢𝑖𝑖𝛼𝛼 (altruism) in model [3] and a constant term in log𝑢𝑢𝑖𝑖𝛼𝛼 in [4]) 0.171*** 0.023 -0.951*** 0.364 
   P_father_widow       0.107 0.178 
   P_father_nonwidow       -0.308 0.317 
   P_mother_widow       0.329** 0.135 
   P_mother_nonwidow       0.481*** 0.170 
   P_health       -0.111** 0.051 
   P_College       0.067 0.117 
   P_SomeCollege       0.119 0.109 
   P_<HighSchool       0.205* 0.108 
   C_male       -0.328 0.222 
   C_College       0.155 0.108 
   C_SomeCollege       0.009 0.113 

α1 (additional term in 𝑢𝑢𝑖𝑖𝛼𝛼 when more than one child lives near)    0.048 0.144 

α2 (additional term in 𝑢𝑢𝑖𝑖𝛼𝛼 for the third and fourth child living near)    -0.038 0.105 

γ0 (constant term in 𝑢𝑢𝑖𝑖
𝛾𝛾 (cooperation))    0.628*** 0.201 

C_age       -0.008*** 0.003 
    C_male_single       -0.178 0.117 
    C_male_partner       -0.124 0.111 
    C_female_partner       -0.050 0.057 

γ1 (additional term in 𝑢𝑢𝑖𝑖
𝛾𝛾 when two siblings join child i)    -0.058 0.174 

ρ0  (constant term in ρ (correlation)) 
 

0.238*** 0.014 0.361*** 0.021 0.476*** 0.035 
C_age_difference       -0.008** 0.003 
C_sex_difference 

    
  -0.114*** 0.024 

Log L -11,951.04 
 

-11,788.79 
 

-11,759.61  -11,693.94  
% correct prediction         
All children 62.50%  61.40%  61.58%  61.95%  
All families 38.37%  38.71%  39.14%  39.62%  
   1-child families 57.13%  57.33%  58.94%  59.95%  
   2-child families 43.03%  41.83%  42.18%  43.06%  
   3-child families 29.70%  31.60%  31.65%  31.35%  
   4-child families 20.11%  21.51%  21.36%  21.59%  

Note: N=18,647. *, **, and *** indicate statistical significance at 10%, 5%, and 1%, respectively. The top section reports the coefficients of 
the 𝑢𝑢𝑖𝑖

𝛽𝛽(= 𝑋𝑋𝑖𝑖
𝛽𝛽𝛽𝛽) term, followed by the coefficients in 𝑢𝑢𝑖𝑖𝛼𝛼 ,𝑢𝑢𝑖𝑖

𝛾𝛾, and 𝜌𝜌. The 𝑢𝑢𝑖𝑖𝛼𝛼 term in the full model [4] is specified in the exponential 
function as in Eq.(5). For all models the 𝑢𝑢𝑖𝑖

𝛽𝛽 term includes the following unreported variables: a constant term, P_Geo_missing, 
C_EducMiss, C_kids_single, Wave2004, and Wave2010. Model [4] also includes Wave2004, Wave2010, and C_EducMiss in the 𝑢𝑢𝑖𝑖𝛼𝛼 term. 



 
 

 
 
 
 
 
 

Table 4: Characteristics of Simultaneous Normal-Form Games in Two-Child Families 

 
Observed location configuration (SPNE) 

  

Who has dominant strategy: 
(Far, Far) (Far, Near) (Near, Far) (Near, Near) Total 

Total 
when 𝑢𝑢𝑖𝑖𝛼𝛼×2.0 

Both children 99.5% 66.5% 71.1% 99.2% 86.2% 62.7% 
Only 1st child 0.3% 16.0% 9.9% 0.5% 5.9% 14.9% 
Only 2nd child 0.5% 14.0% 19.0% 0.3% 7.1% 16.3% 

Neither 0.0% 3.5% <0.1% <0.1% 0.8% 6.1% 

 

Observed location configuration (SPNE) 
  

Equilibrium patterns in simultaneous 
normal-form games: 

(Far, Far) (Far, Near) (Near, Far) (Near, Near) Total 
Total 

when 𝑢𝑢𝑖𝑖𝛼𝛼×2.0 

No normal-form equilibrium 0.0% <0.1% 0.0% <0.1% <0.1% <0.1% 
Unique equil. (Far, Far) 100.0% 0.0% 0.0% 0.1% 39.6% 23.9% 
Unique equil. (Far, Near) 0.0% 94.6% 0.0% 0.0% 21.9% 27.5% 
Unique equil. (Near, Far) 0.0% 2.0% 99.9% 0.0% 20.3% 24.6% 
Unique equil. (Near, Near) 0.0% 0.0% 0.0% 99.9% 17.3% 18.0% 
Two equil. (coordination) 0.0% 0.0% 0.0% <0.1% <0.1% <0.1% 

Two equil. (anti-coordination) 0.0% 3.5% <0.1% 0.0% 0.8% 6.1% 
Note: An event that occurs for less than 0.1% of the population is denoted as “<0.1%”. Two equil. (coordination) means multiple 
equilibrium that consists of (Near, Near) and (Far, Far), and Two equil. (anti-coordination) means (Near, Far) and (Far, Near). Results are 
based on empirical distribution with Monte Carlo simulation for the error terms with 1,000 random draws. 
 

 

 

 

Table 5: Observed and Family-Optimal Location Configurations by Family Size 

 

Number of children living near the parent in SPNE 
(observed location configuration)  Number of children living near the parent in the 

joint-utility optimal location configuration 

Family size: 

Nobody 
near 1 2 3 4  Nobody 

near 1 2 3 4 

1-child family 48.7% 51.3%  
 

  48.7% 51.3%    
2-child family 39.6% 43.0% 17.4%  

  24.4% 51.0% 24.6%   
3-child family 30.3% 34.3% 23.8% 11.7% 

  8.0% 46.5% 35.3% 10.2%  
4-child family 20.5% 30.4% 24.1% 16.3% 8.7%  1.9% 36.5% 39.6% 14.1% 7.9% 

Overall average 35.7% 40.2% 16.8% 5.9% 1.5%  21.0% 47.4% 25.2% 5.1% 1.3% 
Average (𝑁𝑁𝑖𝑖 ≥ 2) 32.5% 37.5% 20.9% 7.3% 1.8%  14.2% 46.5% 31.3% 6.3% 1.6% 
Note: The last row shows average numbers over multi-child families. Results are based on empirical distribution with Monte 
Carlo simulation for the error terms with 1,000 random draws. 
 

 

 

 

 

 



 
 

 

 

 

Table 6: Efficiency Type by Family Size 

 

[1] Based on estimated distribution of 𝑢𝑢𝑖𝑖𝛼𝛼 and 𝑢𝑢𝑖𝑖
𝛾𝛾  [2] Based on 𝑢𝑢𝑖𝑖𝛼𝛼×2.0 and 𝑢𝑢𝑖𝑖

𝛾𝛾×1.0 

Family size: 

Joint-utility 
optimal 

Joint-utility 
suboptimal but 
Pareto efficient 

Prisoners’ 
dilemma  Joint-utility 

optimal 

Joint-utility 
suboptimal but 
Pareto efficient 

Prisoners’ 
dilemma 

1-child family 100.0% 0.0% 0.0%  100.0% 0.0% 0.0% 
2-child family 76.7% 21.7% 1.6%  71.8% 25.9% 2.3% 
3-child family 65.6% 32.0% 2.4%  66.9% 30.0% 3.1% 
4-child family 65.6% 31.7% 2.7%  66.3% 30.3% 3.4% 
Overall Average 76.8% 21.6% 1.6%  75.1% 22.7% 2.3% 
Average among multi-

child families, (𝑁𝑁𝑖𝑖 ≥ 2) 71.2% 26.8% 2.0%  69.0% 28.1% 2.8% 

 

[3] Based on 𝑢𝑢𝑖𝑖𝛼𝛼×1.0 and 𝑢𝑢𝑖𝑖
𝛾𝛾×0.0  [4] Based on 𝑢𝑢𝑖𝑖𝛼𝛼×2.0 and 𝑢𝑢𝑖𝑖

𝛾𝛾×2.0 

Family size: 

Joint-utility 
optimal 

Joint-utility 
suboptimal but 
Pareto efficient 

Prisoners’ 
dilemma  Joint-utility 

optimal 

Joint-utility 
suboptimal but 
Pareto efficient 

Prisoners’ 
dilemma 

1-child family 100.0% 0.0% 0.0%  100.0% 0.0% 0.0% 
2-child family 82.8% 17.0% 0.1%  65.6% 30.0% 4.4% 
3-child family 73.5% 26.3% 0.2%  61.7% 32.9% 5.4% 
4-child family 74.3% 25.4% 0.3%  63.1% 32.0% 4.9% 
Overall Average 82.2% 17.6% 0.1%  70.8% 25.3% 3.9% 
Average among multi-

child families, (𝑁𝑁𝑖𝑖 ≥ 2) 77.9% 21.9% 0.2%  63.8% 31.4% 4.8% 

Note: Panels [2]-[4] report the results of simulations under different externality parameter values, e.g., in Panel [2], the value of 𝑢𝑢𝑖𝑖𝛼𝛼 is 
multiplied by 2.0 for every observation. A joint-utility optimal location configuration is a location arrangement that maximizes the sum of 
children’s utility. Prisoners’ dilemma means a location configuration that has another Pareto-dominating location configuration. The last 
row shows average numbers over multi-child families. Results are based on empirical distribution with Monte Carlo simulation for the 
error terms with 1,000 random draws. 
 
 
 
 

Table 7: Location Configurations and Efficiency Type in Two-Child Families 

 

Efficiency type 
 

 

Joint-utility 
optimal 

Joint-utility suboptimal but 
Pareto efficient 

Prisoners’ 
dilemma Total 

Observed location configuration (SPNE) 
(Far, Far) 31.5% / 61.5% 67.3% / 35.8% 70.5% / 2.6% 39.6% / 100% 
(Far, Near) 23.6% / 78.7% 21.3% / 19.4% 29.5% / 1.9% 23.2% / 100% 
(Near, Far) 22.6% / 87.9% 11.4% / 12.1% 0.0% / 0.0% 19.9% / 100% 
(Near, Near) 22.4% / 100% 0.0% / 0.0% 0.0% / 0.0% 17.4% / 100% 

Total 100% / 77.4% 100% / 21.1% 100% / 1.5% 100% / 100% 

The joint-utility optimal location configuration  
(Far, Far) 31.5% / 100% 0.0% / 0.0%  0.0% / 0.0% 24.4% / 100% 
(Far, Near) 23.6% / 69.3% 36.7% / 29.4% 24.2% / 1.4% 26.3% / 100% 
(Near, Far) 22.6% / 70.8% 31.9% / 27.3% 32.8% / 2.0% 24.7% / 100% 
(Near, Near) 22.4% / 70.5% 31.4% / 26.9% 43.0% / 2.6% 24.6% / 100% 

Total 100% / 77.4% 100% / 21.1% 100% / 1.5% 100% / 100% 
Note: The first number in each cell represents its column share and the second number its row share. A joint-utility optimal location 
configuration is the location configuration that maximizes the sum of siblings’ utility. Results are based on empirical distribution with 
Monte Carlo simulation for the error terms with 1,000 random draws.  

 



 
 

 

 

 

 

Table 8: Reverse-Order SPNE in Two-Child Families 

 

Observed location configuration (SPNE) 
  

Location configuration of 
reverse-order SPNE: 

(Far, Far) 
N=1,125: 
39.6% 

(Far, Near) 
N=658: 
23.2% 

(Near, Far) 
N=564: 
19.9% 

(Near, Near) 
N=493: 
17.4% 

 
Total 

 

(Far, Far) 99.9% 0.0% 0.0% 0.1% 39.6%  

(Far, Near) 0.0% 92.2% 0.0% 0.0% 21.4%  

(Near, Far) 0.0% 7.8% 100% <0.1% 21.7%  

(Near, Near) <0.1% <0.1% 0.0% 99.9% 17.4%  

 
Observed location configuration (SPNE) 

  

Utility changes in 
reverse-order SPNE: 

(Far, Far) 
N=1,125 

(Far, Near) 
N=658 

(Near, Far) 
N=564 

(Near, Near) 
N=493 Total 

Total 
when 𝑢𝑢𝑖𝑖𝛼𝛼×2.0 

No change 99.9% 92.2% 100% 99.9% 98.2% 90.8% 
1st child (–); 2nd (+); total (–) 0.0% 3.7% 0.0% 0.0% 0.9% 4.8% 
1st child (–); 2nd (+); total (+) 0.0% 4.1% 0.0% 0.0% 1.0% 4.5% 

Note: Events that occur for less than 0.1% of the population are denoted as “<0.1%”. Although we do not report it here because it is 
extremely rare, the first child’s utility may increase in a reverse-order SPNE. The second child’s utility may also decrease, but these 
two events never occur at the same time (i.e. there is no second-mover advantage). Results are based on empirical distribution with 
Monte Carlo simulation for the error terms with 1,000 random draws. 
 

 

 
Table 9: Comparison of Alternative Behavioral Assumptions 

Behavioral 
assumption: 

Independent 
maximization 

Non-cooperative, 
sequential 

(preferred model) 

Joint 
maximization 

Non-cooperative, 
private 

information 

Non-cooperative, 
reverse-order 

sequential 

Functional form 
assumption: 

𝑢𝑢𝛼𝛼= 𝑢𝑢𝛾𝛾= ρ = 0 
(Model [1]) 

𝑢𝑢𝛼𝛼 , ρ constant; 
𝑢𝑢𝛾𝛾= 0 

(Model [3]) 

heterogeneous 
externality 
(Model [4]) 

heterogeneous 
externality 

heterogeneous 
externality 

heterogeneous 
externality 

Log L -11,951.0 -11,759.6 -11,693.9 -11,957.7 -11,727.8 -11,711.4 
# of parameters 26 28 52 52 52 52 

AIC 23,954.1 23,575.2 23,491.9 24,019.5 23,559.5 23,526.9 
% correct prediction:       
All children 62.50% 61.58% 61.95% 61.31% 61.91% 61.94% 
All families 38.37% 39.14% 39.62% 38.63% 39.35% 39.66% 

1-child families 57.13% 58.94% 59.95% 58.20% 61.29% 60.55% 
2-child families 43.03% 42.18% 43.06% 42.25% 41.87% 42.61% 
3-child families 29.70% 31.65% 31.35% 30.77% 31.30% 31.69% 
4-child families 20.11% 21.36% 21.59% 20.42% 21.12% 21.59% 

Note: Based on 18,647 child observations in 7,670 families. When 𝑢𝑢𝛼𝛼=𝑢𝑢𝛾𝛾=ρ=0, there is no dependency among siblings, and independent 
utility maximization and joint utility maximization coincide. AIC stands for the Akaike information criterion. The percentage of correct 
prediction is based on the predicted location outcome for each family observation that is defined as the location configuration with the 
largest predicted probability among all possible location configurations. 

 
  



 
 

Table A1: Robustness of Results 

 [4] Full model 
[5] Without siblings of 

age difference < 2 
years 

[6] Multi-
child families 

[7] Simplified model without potentially 
endogenous variables 

P_father_widow 0.093 0.093 0.076   
P_father_nonwidow -0.318*** -0.338*** -0.263***   
P_mother_widow 0.066* 0.077 0.041   
P_mother_nonwidow -0.137** -0.172*** -0.176***   
P_age 0.003 0.000 0.003 P_age 0.006*** 
P_white -0.092*** -0.086** -0.057* P_white -0.150*** 
P_healthy -0.048** -0.073*** -0.034   
P_College -0.254*** -0.262*** -0.241*** P_College -0.274*** 
P_SomeCollege -0.094** -0.092** -0.104 P_SomeCollege -0.132*** 
P_<HighSchool 0.046 0.038 0.014 P_<HighSchool 0.038 
P_Geo_MedPop -0.007* -0.024 -0.004 P_Geo_MedPop -0.002 
P_Geo_LowPop -0.095*** -0.097*** -0.097*** P_Geo_LowPop -0.100*** 
P_House 0.096*** 0.100*** 0.105*** P_House 0.088*** 
C_age -0.008*** -0.005 -0.011*** C_age -0.005** 
C_male_single 0.023 -0.072 0.218 C_male -0.117 
C_male_partner -0.249** -0.370*** -0.040   
C_female_partner -0.341*** -0.345*** -0.337***   
C_College -0.423*** -0.438*** -0.441*** C_College -0.422*** 
C_SomeCollege -0.071** -0.058 -0.066 C_SomeCollege -0.064 
C_kids_partner 0.021*** 0.018** 0.025***   

α0 (constant term) -0.951*** -1.129*** -0.495 α0 -0.338** 
  P_father_widow 0.107 0.178 0.091   
  P_father_nonwidow -0.308 -0.199 -0.365   
  P_mother_widow 0.329** 0.280** 0.297**   
  P_mother_nonwidow 0.481*** 0.553*** 0.344**   
  P_healthy -0.111** -0.104** -0.097*   
  P_College 0.067* 0.126 0.043     P_College 0.011 
  P_SomeCollege 0.119 0.171 0.132     P_SomeCollege 0.213 
  P_<HighSchool 0.205* 0.360*** 0.155     P_<HighSchool 0.374** 
  C_male -0.328 -0.045 -0.622**     C_male 0.166 
  C_College 0.155 0.145 0.086     C_College 0.077 
  C_SomeCollege 0.009 -0.047 -0.019     C_SomeCollege -0.053 

α1 0.048 -0.142 0.214** α1 0.252 

α2 -0.038 -0.267 0.073 α2 0.074 

γ0 (constant term) 0.628*** 0.710*** 0.701*** γ0 0.498*** 

C_age -0.008*** -0.011*** -0.005* C_age -0.011*** 

    C_male_single -0.178 -0.103 -0.281*    C_male 0.078 

    C_male_partner -0.124 0.038 -0.249*   

    C_female_partner -0.050 -0.013 -0.064   

γ1 -0.058 -0.197 0.311* γ1 -0.130 

ρ0 (constant term) 0.476*** 0.490*** 0.364*** ρ0 0.511*** 

C_age_difference -0.008** -0.003 -0.009*** C_age_difference -0.008 

C_sex_difference -0.114*** -0.108*** -0.122*** C_sex_difference -0.094*** 

N of child observations 18,467 13,029 16,974  18,467 
Log L -11,693.94 -8,241.08 -10,694.73  -11,846.95 
% correct prediction      
All children 61.95% 62.22% 62.07%  60.87% 
All families 39.62% 42.58% 34.66%  38.14% 
   1-child families 59.95% 60.35% NA  57.33% 
   2-child families 43.06% 42.49% 42.71%  40.88% 
   3-child families 31.35% 32.09% 31.69%  30.92% 
   4-child families 21.59% 23.49% 21.59%  21.28% 

Note: *, **, and *** indicate statistical significance at 10%, 5%, and 1%, respectively. See Eq. (5) for the functional specification. All models 
include in the 𝑢𝑢𝑖𝑖

𝛽𝛽 term: a constant term, P_Geo_missing, C_EducMiss, C_kids_single (except for model [4]), Wave2004, and Wave2010. The 
𝑢𝑢𝑖𝑖𝛼𝛼 term also includes C_EducMiss, Wave2004, and Wave2010. 


